Structure, symmetry, asymmetry, dissymmetry, axial versus point dissymmetry, asymmetry.

- When presented with any two similar organic molecules we can ask a series of questions to categorize the relationship between the two molecules.

 - **isomers**: the atoms have identical connections
 - **constitutional isomers**
 - **diastereomers**
 - 0 interconverted by bond rotation
 - **enantiomers**
 - 0 interconverted by bond rotation

- **stereo isomers**: the structures are mirror images
 - **diastereomers**
 - **enantiomers**
 - **atropisomers**

- **Examples**
 - **constitutional isomers**: EtOH and Me-O-Me

 - **configurational diastereomer**:

 - **conformational diastereomers**:
enantiomers:
- these molecules can be designated (1S,2S) and (1R,2R) respectively.

conformational enantiomers:

atropoisomers:
- I am guessing that these molecules would be atropoisomers.
- That is that they would be isolable at room temperature under normal laboratory conditions.
- The activation barrier of the equilibrium needs to be greater than ~23 kcal/mol.

Dissymmetric versus asymmetric.
- Asymmetric: lacking symmetry, C_1 point group.
- Dissymmetric: lacking some particular symmetry element. This term might be used with respect to the particular symmetry element. One might say the object is dissymmetric with respect to a σ_v.

- Think about the symmetric versus the dissymmetric signals sent by these faces.
- Apparently there is more than one way to feel ambiguous.

All objects/ molecules that are asymmetric are chiral.

All objects/ molecules that are dissymmetric with respect to Sn are chiral.
- The chiral point groups are C_1 (asymmetric), C_n, and D_n (dissymmetric).
Principles of Organic Chemistry

At this point the instructor plays with a flexible cube to demonstrate this the ideas above.

Some Stereochemistry verbiage:
- I will discuss the following terms and what they mean.
- The table below was copied from C&EN 1984, June 11, p. 21. and the ideas of Prof. Kurt Mislow.

<table>
<thead>
<tr>
<th>Stereogenic</th>
<th>Chirotopic</th>
<th>Achirotopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonstereogenic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The absolute configuration of the product is just a name! It depended in this case on the priority (nomenclature, not chemistry) of the nucleophile.
 - Names are arbitrary.
- Review the Cahn, Ingold Prelog rules in an Organic Chemistry Textbook if you think this is necessary.
- Other designators
 - Axial versus point chirality:
 - 2,3-pentadiene has axial chirality
 - R,S designation can be applied, but it is not so convenient.
 - Instructor demonstrates.
 - The simplest axial chirality can be found in a helix or a spiral.
 - Identical ends
• What is the point group of a simple helix?
 o Only symmetric with respect to C_2 so C_2.
 o Right handed helix . . . use the right hand rule **along the dissymmetric axis**. Why dissymmetric and not asymmetric here?
 • Instructor demonstrates with a helix drawn on the board.
 • Instructor demonstrates with 2,3-pentadiene on the board.
 o Instructor talks about molecules in terms of M versus P designations
 • Instructor compares these to left versus right handed helical designations and finds that they are map into one another.
 • $M =$ Right handed helix.
 • $P =$ Left handed helix.